2 research outputs found

    Synthetic Data Generation Using Wasserstein Conditional Gans With Gradient Penalty (WCGANS-GP)

    Get PDF
    With data protection requirements becoming stricter, the data privacy has become increasingly important and more crucial than ever. This has led to restrictions on the availability and dissemination of real-world datasets. Synthetic data offers a viable solution to overcome barriers of data access and sharing. Existing data generation methods require a great deal of user-defined rules, manual interactions and domainspecific knowledge. Moreover, they are not able to balance the trade-off between datausability and privacy. Deep learning based methods like GANs have seen remarkable success in synthesizing images by automatically learning the complicated distributions and patterns of real data. But they often suffer from instability during the training process

    Synthesising Tabular Datasets Using Wasserstein Conditional GANS with Gradient Penalty (WCGAN-GP)

    Get PDF
    Deep learning based methods based on Generative Adversarial Networks (GANs) have seen remarkable success in data synthesis of images and text. This study investigates the use of GANs for the generation of tabular mixed dataset. We apply Wasserstein Conditional Generative Adversarial Network (WCGAN-GP) to the task of generating tabular synthetic data that is indistinguishable from the real data, without incurring information leakage. The performance of WCGAN-GP is compared against both the ground truth datasets and SMOTE using three labelled real-world datasets from different domains. Our results for WCGAN-GP show that the synthetic data preserves distributions and relationships of the real data, outperforming the SMOTE approach on both class preservation and data protection metrics. Our work is a contribution towards the automated synthesis of tabular mixed dat
    corecore